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Abstract 

A smoothing algorithm based on the Bernstein polynomials and 
their higher dimensional generalizations is presented. The algorithm 
allows for easy introduction of boundary conditions and other con- 
straints. Some examples are exhibited including a realistic two dimen- 
sional case from the Monte Carlo code CASIM. 

1 Introduction 

Smoothing of statistical information, whether done by eye or by computer, 

often meets with considerable skepticism. Obviously, the preferred way 
around statistical problems is to perform a better experiment or, for prac- 
tioners of Monte Carlo simulations, to improve one’s calculational power 
and/or technique. However this is not always expedient, or even possible in 
many instances, particularly in the more observationally oriented sciences. 
Specific objections to smoothing include the inherent arbitrariness in the 
choice of procedure (and within a procedure) along with the apprehension 
that smoothed results may be regarded with more validity if interpreted 
independent of the raw data.[l] In some sense, the better a smoothing pro- 
cedure performs the worse it is with regard to this last point. While fully 
acknowledging such problems, the need for smoothing over statistical irreg- 
ularities in large arrays of data, under various circumstances and for various 
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reasons, nonetheless persists and this note presents an algorithm for smooth- 
ing out histograms including multi-dimensional ones. 

The basic approximants of the algorithm proposed here are the Bern- 
stein polynomials [Z, 31 and their multidimensional generalizations. They 
are well known in approximation theory [4] as well as in the theory of prob- 
ability [5, 61 and in recent years have received considerable attention in 
‘computer aided geometric design’. [7, 8, 91 At its most basic level the al- 
gorithm simply replaces a histogram with a smoothed histogram. With a 
little extra effort, the value of the function at one or more points is obtained. 
Boundary conditions and other a priori information are easy to impose on 
the smoothed out version. 

The specific motivation for this work arises from problems of interpreting 
outputs of the Monte Carlo program CASIM [lo], although one can easily 
imagine a number of other applications for the alogritbm. For convenience, 
but also as a useful focus, this type of application is kept closely in mind 
throughout this note in choice of examples and the like. The reader un- 
familiar with any of this need not be concerned about being subjected to 
a detailed treatment of it here but a few words may help achieve a better 
perspective. Briefly, CASIM is used to study a variety of radiation prob- 
lems, around high energy accelerators. A typical usage [ll] is to calculate 
radiation dose [12] as a function of location in the general vicinity of an 
experimental facility. The result of the Monte Carlo is a large array of dose 
predictions, each one averaged over the volume of a ‘bin’ or ‘cell’ which 
together completely cover the problem geometry. It is recommended, and 
usually possible, to idealize the problem to one of cylindrical geometry or to 
a small set of such problems since the reduction from three to two dimen- 
sions results in fewer, larger bins and therefore better statistical accuracy of 
the Monte Carlo results. CASIM is a weighted (vis-a-vis analog) simulation 
so that typically a very wide range of predicted dose (twenty or more orders 
of magnitude) results. 

Such calculations, even weighted ones, tend to suffer from statistical dif- 
ficulties, especially at locations far removed from where the particle beam 
interacts but where dose estimates are still important. This problem may 
persist even after spending considerable CPU time and using any or all 
computational tricks at one’s disposal. It is the primary aim of the present 
algorithm to aid in the interpretation of such statistically imperfect out- 
put, i.e., following Monte Carlo, normalization, etc., the smoothing proce- 
dure is invoked and its resuits printed or graphed-preferably along with 
the unsmoothed ones. Customary ways of dealing with the problem, e.g., 
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smoothing a dose contour plot graphically (by eye) over its bumps and de- 
pressions, in addition to being less accurate, usually require considerable 
extra work and may lack consistency from one calculation to the next and 
from one practioner to the next. A second, distinct, need for smoothing 
in the CASIM context arises in calculations of energy deposition made in 
connection with target heating, quenching of superconducting magnets, etc. 
Typically, one wishes to estimate the mazimum energy deposition in the 
target or superconducting magnet. However the Monte Carlo yields only 
energy deposition averaged over a set of volume bins and, since intra-bin 
variations can be large, it may be necessary to sharpen the estimate of the 
maximum energy deposition and of its location. This means to replace all 
or part of the histogram with a curve or surface. 

To avoid possible confusion a few points are emphasized at the out- 
set: (1) it is not required that the result be completely ‘wrinkle free’ or 
esthetically pleasing, as in certain computer graphics applications. The goal 
is accuracy with respect to the 2we distribution underlying the data. [13] 
(2) It is likewise ml required that the result be in some simple analytical 
form to facilitate further manipulation or study. The final answer is actually 
a product of successively generated factors, each of which is itself a very high 
order polynomial, and its analytical form is ordinarily not kept track of dur- 
ing computation. (3) In the context of calculating radiation dose one should 
recognize the distinction between fitting the Monte Carlo results to a simple 
expression [14] for ease of interpolation or extrapolation, from the present 
smoothing algorithm which is much less presumptive. (4) The histogram or 
array to be smoothed must represent a continuous function. If, for instance 
in the CASIM example, nuclear interaction densities are calculated, there 
will be (physically significant) discontinuities across boundaries between dif- 
ferent materials and it makes no sense to smooth over them. By contrast, 
particle flux and dose [12] are expected to be continuous and smoothing is 
applicable. 

Below, in sec. 2, the basic algorithm for one dimensional histograms is 
described. Remaining in one dimension, introduction of boundary conditions 
and other modifications is indicated in sec. 3. Generalization to higher 
dimensions is discussed in sec. 4. Some examples are included in each section 
along with a specimen from CASIM in sec. 4. Concluding remarks and 
caveats are in sec. 5. 
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2 Basic Algorithm 

The mimimal form of the algorithm replaces a one dimensional histogram 
with another, smoother, histogram and is the subject of this section. Prior 
to presenting the basic algorithm some related properties of the Bernstein 
polynomials are mentioned. The algorithm’s iterative character leads to 
considerations of a stopping criterion. Predicting values of the function 
representing the histogram at a set of predetermined points is discussed 
next. The section concludes with an example. 

2.1 Bernstein Polynomials 

The one dimensional nth order Bernstein polynomial of a function, f(z), 
defined on the interval [0, l], in conventional notation, is 

zk(l - zyk. 

By definition, strict equality is implied at the end points: B,(f; 0) = f(0) 
and B,(f; 1) = f(1). The interval [0, l] is easily resealed to any finite range 
[a, b]. In his proof of Weierstrass’ Theorem, Bernstein [Z] showed that for 
f(r) bounded on the interval, lim+.m 
is continuous. 

E,(f; z) = f(z) at any I where f(z) 

Of great importance to their use as stable and smooth approximants 
are the m&lion diminishing properties of the Bernstein polynomials.[l5] 
Loosely stated this means that for any straight line the number of intersec- 
tions with the graph of B,(f; z) does not exceed that with the graph of f(z). 
It can also be shown that the tota variation of B,,(f; z) is less than that of 
f(z), where total variation is defined by J-‘,” u(f(z) --y)dy where ZI denotes 
the variation of its argument and the integration is over all reals. Like- 
wise of relevance is the simultaneous approximation of the function and all 
of its derivatives, i.e., lim,,,, B,(f; z) = f(r), lim,,,, BL(f; z) = f’(z), 

li=hecc Bi(f;z) = f”(z), etc. However, the convergence may be quite 
slow.[4] Differentiation and integration of the Bernstein polynomials is eas- 
ily performed and results in compact expressions. 

2.2 Algorithm 

The histogram f(z) is assumed to have 7~ bins of equal width (A~).[161 
It is preferred to work with the cumulative distribution which, unlike the 
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histogram, represent a func&m known at fixed intervals of z 

F(i)= &f(;)Ar 
id 

where AZ = l/n on [O,l], and with the convention F(0) = 0. The mCh order 
Bernstein polynomial of F is then 

zk( 1 - z)“-k. 

Since B,(F; 1) = F(1) conservation of the total area covered by the his- 
togram is guaranteed. If F(k/m) is non-decreasing, as occurs when all 
entries in the histograms are non-negative, then the variation diminishing 
property guarantees B,,,(F; z) to be non-decreasing. 

Eq. 3 represents the first step of the basic algorithm. A good choice for 
m here is the number of bins in the histogram, n. In some sense this makes 
optimal use of the information since omitting data leads to loss of accuracy 
and possible bias while choosing m > n does not add any new information 
and would only tend to interpolate the ‘staircase’ character of the histogram. 
For m = II, eq. 3 is typically a great deal smoother than eq. 2 as well as the 
underlying true distribution. For the next step, the ratios 

R,(X) = FCkln) 
&(F; k/a) 

are taken and the Bernstein polynomial of RI is obtained: 

B,(RI;z)= 5 RI(;) ; 
0 

zk(l - zyk. 
k=O 

A more accurate estimate of F(z) is then 

(4) 

El(F;r)= B,(F;z)B,(R~;z). (6) 

Note that El(F; 0) = 0 and &(F; 1) = F(1) still hold by the end point 
matching properties of E,(Rl; z). However, I&(?‘; z) is no longer guaran- 
teed to be non-decreasing and eq. 6 might predict some smoothed bins to be 
negative even where this does not make physical sense (e.g., negative dose) 
This can be remedied (see below) by working directly with f(z) instead of 

F(x). 
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Compared with eq. 3, the new estimate, eq. 6, is expected to be closer 
to F(z), e.g., in the least squares sense, but less smooth as quantified, e.g., 
by the second derivative. The steps eqs. 4-6 can now be iterated. 

k F(kln) 
“k) = &(F; k/n) 

B,(R*; z) = 2 Rz$, 
0 

; zk( 1 - 2 y (8) 
k=O 

E,(F; z) = &(F; z)B,(&; z) = &(J’; =)&,(RI; ~)&(Rz; z) (9) 
until an acceptable solution is obtained. The (smoothed) content of the kth 
histogram bin after the it* iteration is then 

e, k = Ei(F; [k + 11/n) - Ei(F; k/n) 
II AX (10) 

The B,(R;; k/n) have smaller total variation than the R; which means 
the Ri approach unity during iteration. Also the B,,(R;; k/n) cannot be 
identically unity when the R; are not and thus stop further progress. Since 

is) zk(l - z)“-k = I 

for all r including I = k/n(k = 0, 1,. .), and since the 

form a basis for all polynomials of degree R, any solution other than all 
R;(k/n) = 1 is excluded. This then is the minimal form of the algorithm 
where the object is to replace a given histogram with another, smoother, 
histogram. Computationally it is nothing more than a series of matrix mul- 
tiplications and since the elements can be precalculated, the procedure is 
very fast. Storage requirements are modest and do not increase as the iter- 
ation progresses. 

2.3 Stopping Criteria 

Perhaps the most straightforward way to decide when to stop the iteration, 
eqs. 7-9, is at or near the minimum of some objective function or cost func- 
tion which attempts to balance accuracy, which increases with each step, 
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with decreasing smoothness. Accuracy and smoothness must be quantified 
in this context. For simplicity, in the examples shown below the objective 
function, R, is always of the type 

+a Edkh) - zEi([k t 11/n) t Ei([k + 21/n) ’ 

! Ei([k t 11/n) I 

(13) 

where i refers to the iteration number, F and E; are from eqs. 2 and 9, 
respectively, and CQ is the standard deviation associated with F(k/n). The 
lint set of terms in eq. 13 is related to accuracy in the usual (weighted) 
least squares sense. The histogram itself, f(z), and its approximant, e;(z), 
could be used in eq. 13 instead of F(z) and EJr), but the latter provide for 
smoother behavior of the objective function over the course of the iterations. 
This is not surprising since this algorithm is formulated directly in terms of 
F(r) and E;(r). Another choice might be 

where x2 corresponds to the fist sum of eq. 13 and Pv(z) is the &i-square 
distribution with Y degrees of freedom. Eq. 14 is perhaps a more appropriate 
definition of accuracy in this context but it is not clear how Y should change 
(diminish) with each iteration. The second set of terms relates to smoothness 
and approximates J~(dzE~(z)/dz2) dz. Th e constant a in eq. 13 is to provide 
‘right’ or ‘desired’ balance between accuracy and smoothness. 

Accuracy and smoothness need not be the only ingredients of the ob- 
jective function and one can bring other criteria into play, e.g., one may 
discourage certain features in the solution which may be excluded on a pri- 
ori grounds such as negative bin content in a histogram, extraneous peaks or 
dips, etc. An intriguing approach is via the concept of maximum entropy.[l7] 
For the CASIM application there has not as yet been any systematic search 
for a satisfactory objective function. What is fInally adopted is likely to 
be dictated as much by practicality as by physical or mathematical argu- 
ment: simplicity, speed of convergence, etc., with the final details (e.g., a 
in eq. 13) to be settled mostly by experience. More on objective functions 
can be found, e.g., in refs. [9, 18, 19, 201. A thorough analysis of any of 
this is beyond the scope of the present study. But the choice of an objective 
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function, while it has important bearings on the outcome of a given C&I&- 
tion, may be treated independently from the rest of the method and in the 
present note this is limited to what is stated above plus a few remarks in 
the various examples. 

2.4 Estimates at Points 

The basic smoothing algorithm calculates a new histogram, i.e., a set of av- 
erages of a function over finite z intervals. If the function varies significantly 
within an interval it may be necessary to sharpen this to estimating its value 
at a given point. With the notation introduced in eq. 10, let e;(z) be the 
smoothed version of the f(z), which represents the original histogram. Let 
subscript i indicate the number of corrective iterations already performed, 
i = 0 referring to the value of e(z) derived from the Bernstein polynomial 
of F(z): 

co(r) = B;(F;z) = ;$I [F(q) -F(k)] (m; ‘) x+(1 - I)+-‘. 

(151 
From eq. 6 

q(r) = E;(F; z) = B’(F; z)B(Rl; E) t B(F; z)B’(Rl; z) (1’5) 

and in general 

e<(z) = E:(F; z) = E;-,(F; +)B(R;; z) t E;-,(F; z)B’(R;; z) (17) 

so that, by calculating B’(Ri; z) and E:(F; Z) a smoothed estimate at any 
given I is obtained and, when repeated over a sufliciently dense set of E 
a histogram is replaced by a smooth curve. Examples of this are shown 
below. As with the basic algorithm, the computation reduces mostly to 
matrix multiplications and the matrix elements can be precalculated for 
computer time economy. 

2.5 Example 

The algorithm of sec. 2.2 is illustrated by choosing a somewhat arbitrary, 
but easy-to-integrate function to represent the true distribution: 

f(l) = &gy-% 
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i.e., the sum of three Gaussians. To simulate a data set in histogram form, 
the interval ([O,l], for convenience) is divided into twenty bins, the func- 
tion is integrated over each bin, and then randomly perturbed by a factor 
[l trN(u)], where TN(U) is a normally distributed random number with zero 
mean and standard deviation (T. This last statement implies that the error 
in each bin is proportional to its expectation value and represents an ide- 
alization of a condition encountered in CASIM type calculations (actually 
relative error tends to decrease slowly with increasing bin content). Neg- 
ative values resulting from the random perturbation are replaced by zero. 
Finally the total contents of the histogram is normalized to the integral over 
[0, 1) of eq. 18. This is also an idealization of the Monte Carlo results, where 
the sum over all bins converges to its asymptotic value much faster than 
suggested from statistical considerations alone, by virtue of the appropriate 
conservation laws incorporated in the calculation. 

The procedure of sec. 2.2 is now applied to the histogram so derived 
from eq. 18, with a stopping criterion as in set 2.3. Comparison of the 
deviations between algorithm predictions and true bin contents, for various 
fl and for different sets of random deviations, leads to a reasonable choice of 
a to balance smoothness with accuracy but without attempting to optimize 
this parameter. In realistic applications the advantage of checking against 
the true distribution is lost but a similar strategy may make use of surrogate 
true distributions, e.g., statistically reliable Monte Carlo results or analytical 
approximations. While the optimum value of a parameter such as a will 
depend upon the problem, such a determination should usually suflice for a 
large class of problems. Also, experience from examining the smoothed data 
may judge whether they are over- or undersmooth and indicate any needed 
adjustments. 

Fig. 1 shows results of the algorithm acting on four histograms derived 
in the above fashion from eq. 18, with a 1 = l,q = O.l,ax = 0.01 and 
bl = 0.1, bz = 0.3, b3 = 0.5 for all, but with different ‘T, as indicated in the 
figure.[21] To make the comparison more meaningful, all are generated with 
the same set of TN. In addition to the smoothed histogram predicted by the 
algorithm, fig. 1 also shows a smooth approximant obtained by estimating 
eq. 18 at a finely spaced set of points. The same stopping criterion (eq. 13) 
is used for all o. It is evident from fig. 1 and entirely expected, that the 
smoothing increasingly deviates from the true distribution with increasing 
cr. For 0 = 0.1 this deviation is hardly discernible on the scale presented 
here, while for the larger P there is a tendency to reflect random fluctuations 
present in the data. Some of this may be avoidable by making the stopping 
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function more strongly dependent on Q. 

3 Improvements and Variants 

This section describes some of the many possible modifications aiming to 
improve the basic algorithm by including boundary conditions and other a 
priori information. A related property of the Bernstein polynomials: end 
point malching, is discussed below. Next, an example of a boundary condi- 
tion is explored. The distribution is similar to one of radial energy deposition 
density (p) in cylindrical geometry: the beam is centered on the cylinder axis 
and so one knows that a given depth the maximum of p occurs on axis: 

dp z=o at r=o. 

Below, this condition is imposed on the data in two different ways. Next, 
two constraints of the inequality type, are examined: (1) monotonically de- 
creasing distributions, and (2) distributions which are positive everywhere. 
Some remarks on ‘fine tuning’ and on weighting conclude this section. 

3.1 End Point Matching 

The basic algorithm starts from the cumulative distribution and end point 
matching at I = 0 ensures that the integral of f(z) over all z is conserved 

B(F; o) = F(O) = 1’ f(z) d+ 
JO 

using the convention [21] F(X) = Ji f(+)dz. In the next step, since 
R(0) = F(O)/B(F;O) = 1, the end point interpolation yields B(R;O) = 1 

and therefore E1(F;O) = F(O), etc., so that conservation of the integral 
is maintained throughout. This is of great virtue in many applications in- 
cluding CASIM, where, as already mentioned, the integral is much better 
known statistically than would be derived by independently combining its 
component parts. 

For the Bernstein polynomials end point matching extends to the deriva- 
tives as well.[4] But the same does not hold for the algorithm. For example, 
for the fist derivative, after one iteration 

E;(F; 0) = B’(F; O)B(R; 0) + B(F; o)B’(R; 0) = F’(0) + F(O)R’(O) (21) 
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but R’(0) # 0, in general. However, at the I = 1 end, B(F; 1) = F(1) = 0, 
B’(F; 1) = F’(1) = f(1) and after one iteration: 

E;(F; 1) = B’(F; l)B(R; 1) t B(F; l)B’(R; 1) = f(l)R(l). (22) 

Now, R(1) = B(F; 1)/F(l) and hence is undetermined. This may be ex- 
ploited by fixing R(1) to suit best the application. Two obvious choices 
are: (1) R(1) = 1, which leads to B(R; 1) = 1 and by eq. 22 to end point 
matching. This is used in the above example, as is evident from fig. 1.[21] 
This choice seems justified only in cases where one has special confidence 
in f(1). Otherwise it may be more reasonable to set (2) R(1) = R(i), i.e., 
equal to its nearest neighbor which decreases the total variation of R(z) 
and provides for a smoother approximant. This is done in the remaining 
examples. Other choices are of course possible and it is not claimed that (2) 
is always the best. 

3.2 Boundary Conditions 

As stated above , the introduction of boundary conditions is discussed here 
only for the rather specialized example of a cylindrically symmetric (radial) 
distribution. The distribution of sec. 2.5 may serve here as well but with 
this new interpretation. To emphasize this, the independent variable z is 
replaced by 7 and f, corresponding to the ordinate of the histogram, becomes 
p, e.g., the density of deposited energy. The total energy deposited in the 
bin TC 5 T < P~+I is now 

I 
ri+l ti = p(r)Zxrdr 

‘i 

and the cumulative distribution is [Zl] 

P(,i) = /- p(r)2mdr = 2 tj 
pi 

with P(0) representing the total energy deposition. Two different meth- 
ods are used to introduce the boundary condition and both start from the 
cumulative distribution. 

The fist method is similar to that used with splines in computer graph- 
ics, (see, e.g., ref. [9]): extra points are added outside of the given boundary 
and the value of the function at these points is fixed to match the boundary 
condition(s). In the present example there are three conditions to be met 
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at P = 0: (1) P(0) = Cy=, tj or conservation of total energy deposited, 
(2) P’(0) = 0 which follows from eq. 24, and (3) p’(O) = 0 or equivalently 
P”‘(0) = 0. No condition on P”(O)[= 2xp(O)] results. Therefore, three 
equally spaced points (7 = -l/n, -2/n, -3/n) will be added and the algo- 
rithm of sec. 2.2 is carried out over this extended set. The values of P at 
these points are obtained by solving the equations 

&+S(P;O) = ktj 
j=l 

BL+,(P;O) = 0 

B;+,(P;O) = 0 

for P(-l/n), P(-2/n), and P(-3/n). In the next iteration the ratios 
R(r;) = P(?;)/B(P;?i) are obtained for all pi > 0 and R(-l/n), R(-2/n), 
and R(-3/n) are determined (as is easily derived) from conditions almost 
identical to eqs. 25: 

&+,(R; 0) = 1 

B;+,(R; 0) = 0 

B:+,(R; 0) = 0 (26) 

and this prevails during all subsequent iterations. Fig. 2 is the result of ap- 
plying this method to the same set of four histograms as shown in Fig. 1, but 
reinterpreted as radial distributions. The same stopping criterion is applied 
and a smooth approximant is likewise generated here using the extended 
set of (twenty four) points. The interpretation as a radial distribution also 
affects estimates at points. Since dP/dr = 2rrrp the smoothed estimate of 
p is BA+,(P; r)/2nr, to be replaced at ? = 0 by BE+,(P; 0)/2r. 

The second method extends the domain of P to -1 < T 5 1 by assuming 
P(-T) = P(F) or, equivalently, p(-?) = P(T). The algorithm proceeds as in 
sec. 2.2 but now using a set of 2n-1 points.[22] The condition p’(O) = 0 holds 
as does P’(0) = 0 though conservation is not satisfied since r = 0 is no longer 
an end point. When a minimum is encountered in the objective function, 
E;(P;O) is only approximately equal to P(0). However, at least in this 
example, the approximation is very good and if need be a final normalization 
factor can restore exact conservation. Results of this method are shown in 
fig. 3, again for the same set of histograms and with the same objective 
function. 
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The first method appears easier to generalize to other types of conditions, 
e.g., conservation of sane of higher moments of the distribution, whereas 
embedding the problem in a larger one, as in the second method, relies on 
smx inherent symmetry. Where applicable the latter offers a mire natural 
way to introduce the boundary conditions and, perhaps for this reason, has 
slightly better results. Imposing such conditions should be done only when 
there is great interest, e.g., in the value of p at T = 0 or nearby. In addition, 
the histogram data must be compatible with this, e.g., when large intra-bin 
variations in p near P = 0 hide the presence of a maximum at T = 0, imposing 
this condition--which is in the form of a relation among the P(k/n)-will 
cause the smoothing to be less accurate away from F = 0. 

3.3 Constraints 

One commonly encountered constraint is usually present in CASIM results: 
the function underlying the data, e.g., p above, is monotonically decreasing 
with T. The easiest way to ensure the final result will be monotonically 
decreasing is to combine bins in regions where this constraint is violated 
(due to statistics) until the histogram itself is monotonic. Care must be 
taken that no gross bias is thereby introduced. Such averaging should not 
.&ect the integral of the distribution, and its higher moments only as little 
as possible. The following rule, while it can be improved upon, is adopted 
here for simplicity since it yields a monotonic distribution in a single pass 
without any gross bias: if a bin (upper limit ri) is less than or equal in value 
compared to its neighbor at T;-~ no action is taken; if it is larger the surplus 
is spread over an area with a radius of 2ri. The smoothing algorithm will 
retain this monotonicity, with at most minor deviations. Fig. 4 shows the 
result of enforcing this constraint, with the same treatment of the boundary 
condition as in fig. 2, with which it should be compared. 

A second common constraint, rigorously true in CASIM, is that only 
positive p make physical sense. Since the densities predicted by the Monte 
Carlo are nonnegative and an easy way to keep p positive everywhere is 
to work directly with p, instead of the cumulative distribution, since (for 
0 5 T 5 1) all coefficients of the p’s in the Bernstein polynomials are posi- 
tive as well. This requires an interpolation rule to convert the histogram to 
a density at T = 0, i, i,. . ,1 and thus brings extra assumptions into the 
smoothing. In the present example p values are converted assuming expo- 
nential dependence on P within each bin and with a slope derived from its 
nearest neighbors. Fig. 5 shows results of such a smoothing. In addition 
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to ensuring p > 0 this method has the advantage that, on general grounds, 
better convergence is expected for the function to which the procedure is 
apphed as compared to its derivative. The results show actually an im- 
provement over fig. 3 which uses the cumulative distribution and the same 
treatment of the boundary condition. 

3.4 Fine Tuning 

Near the minimum of the objective function, f2;, the smoothed estimate 
E;(z) of the function P(z) typically changes slowly between iterations. In 
many applications, including the CASIM example, the objective function 
carries itself enough ambiguity to discourage any fine tuning to pinpoint the 
precise minimum. Instead the calculation is halted when Ricl > R; and 
Ei is adopted as the ‘solution’. In cases where one has great confidence in 
the objective function or where large differences exist between successive E; 
near the minimum, some interpolation scheme among the last E;‘s could 
improve matters. A more systematic approach to this involves taking the 
Bernstein polynomial of a Bernstein polynomial. 

After k iterations the algorithm produces 

Ek(z) = B,(F; z)B,(Rl; z) . Bn(Rk-I; z)B,(Rk; z) (27) 

and assume now that Rc-1 < &-2 and Slk-1 < flk. Assume also that it has 
been ascertained somehow that the minimum lies between iterations k - 1 
and k. An intermediate solution between the two is 

Ef)(r) = B,(F; z)B,,(Rl; z). . .B,(Rk-1; z)B;)(Rk; z), (28) 

Bp)(Rk; z) = B,[B,(Rk; 5); z] is the Bernstein polynomial of B,(Rk; z) and 

2 serves to distinguish it from +. If fir’ < $2-1 then Ep’(z) is preferred to 
EkeI( If not, one can try a solution intermediate between &-l(r) and 

Ef’(z) 

Ef’(z) = B,(F; c)B,(Rl; c) . . B,(R&I; z)Bp)(Rk; Z) (29) 

where Bp)(Rk; z) = B,,[&)(Rk; i); z], nf’ is compared with or’, and so 
on. Details of the search procedure aside, it is clear that a more refmed solu- 
tion can be obtained this way. At present this fine tuning is not implemented 
in CASIM. 
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3.5 Weighting 

One aspect of weighting the data has already been mentioned: in the objec- 
tive function, eq. 13, each of the squared residuals is weighted by l/u;, where 
~j is the error associated with F’, though clearly other weightings may be 
tried or preferred. \Veighting can also be introduced into the iteration itself 
by means of the so called ‘rational’ Bernstein polynomials: [7] 

Bvat(F; z) = CwjFjb?(z) 
n 

Cwjb?(z) 

with b? = ? 
0 3 

zj(l - z)“-j, and Uj the weight of Fj. This will cause the 

algorithm to favor, i.e., shift the answer closer to, data with large wj. Note 
that, by eq. 11, when all Wj = 1 eq. 30 reverts back to eq. 1. If all Wj > 0 
the variation diminishing properties apply to the BFPL(F; z) as well. 

The wj, in addition to their usual role BS a measure of how well Fj is 
known, may also be useful in steering the convergence of the procedure. 
For example, increasing the wj at places where the fit is poor will tend to 
accelerate the decrease of the x2 part of the objective function and help reach 
its minimum in fewer iterations. However care must be taken in exercising 
such options to avoid introducing systematic bias into the calculation. Other 
than their direct use in the objective function, weighting has not been used 
in CASIM thus far. 

4 Two Dimensions 

As mentioned in the Introduction smoothing in two dimensions is the prime 
motivation for this study since most CASIM work is done assuming (or 
adapting to) cylindrical symmetry. Three dimensional calculations are none- 
theless an occasional necessity [23] and since the increased dimension usua.lIy 
spells increased statistical difficulty the need for smoothing may be increased 
as well. Extension to three (or higher) dimensions is not undertaken here be- 
cause it is straightforward enough to contemplate while a presentation with 
examples, etc., might easily become more cumbersombe than illuminating. 

The usual (‘tensor form’) two dimensional generalization of the Bernstein 
polynomials is 

B&f; z,y) = 5 2 f(;, ;) ; 
k=O I=0 i )O 

; zk(l - z)“-‘~‘(1 - y)“-’ (31) 
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with obvious extension to higher dimensions. Different types of multidimen- 
sional generalizations exist, see, e.g., ref. [3, 51, but are not considered here. 
The properties which make the Bernstein polynomials attractive in one di- 
mension (see sec. 2.1) are by and large expected to carry over to the higher 
dimensions though this should not be taken everywhere for granted.[7] The 
algorithm works exactly the same as in one dimension. Again one may 
wish to produce a smoothed histogram or one may calculate values at set of 
points. Boundary conditions and constraints can be applied here as well and 
this is illustrated below with some examples, which are essentially extensions 
of the one dimensional cases above. This is followed by an application to a 
realistic CASIM dose calculation. 

4.1 Examples 

Analogous to sec. 3.2 a relatively simple and easy-to-integrate expression is 
adopted to represent a cylindrically symmetric density: 

p(r,z)=i:ai-e 7 + = -(r’tzbf)(7tr)/zbf 
;zl 4%; 

This might, e.g., mimic the energy density resulting when a proton beam 
strikes a target. One is mostly interested in estimating the maximum energy 
density, where it occurs in the target, and how it varies with location in the 
vicinity of the maximum. Since the maximum must occur somewhere on 
the (beam) axis, smoothing here means to refine the (bin averaged) p of a 
Monte Carlo to point values along the axis and in its immediate vicinity. 
The boundary condition of sec. 3.2, i.e., Bp/ar = 0 at r = 0, is considered 
to hold here also. 

Preparation of a test sample in the present example is much the same 
as in sec. 3.2, and based on the same rationale. Eq. 32 is averaged (ana- 
lytically) over each bin of a 20 x 20 array to yield its true content which is 
displayed in fig. 6 as a two dimensional histogram (‘lego’ plot). To each bin 
is added a randomly varying normally distributed ‘error’ proportional to its 
true content and with negative results set to zero. The total summed over all 
bins is normalized to that calculated from eq. 32. The smoothing procedure 
is then tested for various values of the relative error V. Again one can use 
the cumulative distribution P(r, z), the integral of p over P and z, or work 
directly with p. Boundary conditions are introduced similarly: by including 
in the array additional points (with T < 0) to ensure their satisfaction or by 
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symmetrizing the density (or distribution) with respect to P. The stopping 
criterion is similar to the one dimensional one (eq. 13) with the square of 
the second derivative replaced, somewhat arbitrarily, by 

(a2p/arz)2 +2(azp~aTar)2t(a2pfaz2)2. (33) 

Three examples are included: (1) using the cumulalive disiri~ution with 
additional points at T < 0, (2) ditto but with symmetric boundary condition, 
and (3) using the density with the symmetric condition. In the iirst example, 
for simplicity, the extra points are calculated only on a row-by-row basis, 
me., as for a one dimensional problem using only the P values of the row 
(constant .z) in which they are located. Only two extra points (per row) 
are included which ensure that Bk+,(P;O) = 0 and Br+,(P;O) = 0. The 
third condition (see sec. 3.2), would enforce row-by-row conservation of the 
integral of the density and thereby tend to undo any smoothing achieved 
along z. Again one could normalize to match the smoothed total over the 
entire target to the data, but close agreement makes it unnecessary here. 
Enforcing the other two conditions row-by-row only also appears to work 
quite well: in all instances p is seen to have a maximum at T = 0, at least as 
calculated here on a mesh with Ar = 0.002. In examples (2) and (3) above 
conservation of the sum over all bins is always close and the maximum at 
T = 0 follows from symmetry. In (3) li near interpolation is used to convert 
the histogram to a function. 

Figs. 7-10 show some results of these two dimensional tests of eq. 32 
for relative errors of e = 0.1,0.25,0.5 and 1.0. For each case a histogram 
is shown of the random data sample derived from the histogram of fig. 6 
along with the smoothed versions obtained using the algorithm as in (l)- 
(3), above. These figures are only meant to convey a general impression so no 
scales are included. In figs. 6-10 p is plotted on a linear scale which extends 
from zero to N 30. Because of fluctuations, the data sample plot has occa- 
sional excursions beyond this and the p scale of figs. 9a and 10a is therefore 
extended. Plots (a)-(c) of figs. 7-10 are true two dimensional histograms 
but (d) is a set of p values smoothly interpolated, along lines of constant T 
and of constant z separately, by the grahics program TOPDRAWER.[24] 

It is interesting to compare point estimates along the T = 0 axis since 
the maximum of p is expected to fall on the axis. These point estimates are 
the direct result of method (3). When using the cumulative distribution the 
procedure is much the same as for the one dimensional radial distribution 
with e(r, z) = (2xr)-18ZB(P; T, r)/LMz being the estimate for p for T # 
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0 and e(0, z) = (2~)~'@B(P; 0, r)/L%~?z. Fig. 11 shows the curves at 
T = 0 for examples (l)-(3) with diff erent (T, along with the actual values 
from eq. 32. Also shown is a histogram of the string of bins closest to 
T = 0 (7 5 0.05) although this represents only a small part of the data 
used in the smoothing at T = 0 and averaging over T 5 0.05 introduces a 
slight downward bias. Observations made for the one dimensional examples 
seem to remain valid: using the density works best and, when using the 
cumulative distribution, the symmetric boundary condition performs better. 
This makes sense for reasons referred to in the one dimensional case though 
one cannot draw any fim conclusions based on this limited sampling. 

4.2 CASIM Application 

The typical CASIM calculation results in a 50 x 50 two dimensional his- 
togram of dose predictions as a function of location. To implement what 
can be concluded from the above examples into a procedure, a good choice 
appears to be: (1) convert the histogram to a function on an equispaced grid 
prior to smoothing, (2) include the constraint of a monotonical decrease with 
radius at constant z, (3) ignore the boundary conditions at T = 0, since one 
is mostly interested in the dose at large radii. It is often possible, and helps 
the smoothing, to add another constraint: (4) at constant T, the z distri- 
bution is restricted to have (at most) a single ma.ximum.[25] In realistic 
applications this constraint may have more exceptions to it than the radial 
one. 

Typically, the dose predicted by such a calculation varies enormously 
with location (twenty orders of magnitude in the example below), which im- 
plies large intra-bin variations. Therefore, care must be taken in the point 
interpolation from the histograms.[26] Al so because of this enormous vari- 
ation, the fist step of the algorithm is performed on logp, but continues 
with linear ratios thereafter. To accomodate taking logarithms, bins with 
zero content are augmented by a small dose (ED) equal to one tenth of the 
smallest of non zero bin. The objective function is as for the examples of 
sec. 4.1. The actual errors estimated from the Monte Carlo are used in the 
‘least squares’ term [27] but, since the relative error varies only slowly with 
location, n remains sensitive even to very low dose predictions at large T. 
The curvature term varies more smoothly from one iteration to the next if 
one uses the sum of the squares of the principal curvatures of the surface 
in lieu of eq. 33. Fig. 12 shows the raw histogram of a realistic CASIM 
calculation along with the smoothed version, obtained after three iterations. 
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In fig. 12 the p scale is logarithmic and spans some twenty orders of mag- 
nitude. The ‘floor’ consists of all bins or points below CD. As can be seen 
a reasonably smooth solution is obtained. Some wrinkles, e.g., the ones at 
large z and small T are probably removable by weighting since statistics is 
very poor in that region. Fine toning (sec. 3.4) is possibly of significant 
benefit here. 

Estimates of dose in the region upstream of the target, i.e., due to par- 
ticles traveling opposite to the beam direction, are obtained in CASIM by 
the artifice of allowing the beam to penetrate the first five bins along I 
without interaction. Especially at high energy this results in a large differ- 
ence between the fifth and sixth bin along z, near T = 0. Fig. 13 shows an 
enlargement of a region of 10 x 10 bins at the beginning and center of the 
target. The p scale is again logarithmic, and along the T = 0 axis, the sixth 
z-bin is larger by a factor of N 150 than the fifth. The agreement which is 
typically within the Monte Carlo error in this general vicinity, is no better 
than a factor of 2 - -3 at the jump itself, but one should note that (a) the 
interpolation procedure from histogram to function plays a role in this, and 
(b) with more iterations a better approximation would result in this region, 
at the expense of introducing more structure (due to fluctuations) in the 
solution elsewhere. The lesson is probably to ignore the smoothing in this 
region if one wishes to concentrate on dose at large P. If, instead, one seeks 
a smooth approximant in the region of fig. 13 one might succeed better 
repeating the calculation over a smaller patch of z and T. 

5 Concluding Remarks 

Much work remains to be done if the algorithm is to be placed on tim 
footing. The few examples above show some promise but offer no assurance 
for more general applicability and, emphatically, no such claims are made 
here. A larger variety of such examples has to be examined, including cases 
with more inherent structure such as single or multiple peaks of various 
shapes, large single bin fluctuations, etc. As part of such studies there 
should be a comparison with existing smoothing algorithms. There is a 
need to be more quantitative in how well the smoothing performs: a useful 
addition would be the inclusion of an error analysis to help judge the merits 
of different procedures applied to the same data. This could also be useful in 
studying stopping criteria, which as already amply referred to above, must 
be sharpened. 



Bearing in mind these caveats and those connected with smoothing in 
general, the algorithm described above is easy to implement and appears ca- 
pable of yielding a smooth approximmt to an eqtispaced histogram of one 
or more dimensions. Boundary conditions and constraints of the inequality 
type are easy to include. Derivatives and moments are asymptotically repro- 
duced. Following some preparation the operations become mostly repeated 
matrix multiplications, using the same matrix throughout. The matrix ele- 
ments are themselves easy to calculate and can, if desired, be precalculated 
for repeated later usage. The algorithm is reasonably fast. The CASIM dose 
application is by far the longest in duration of the above examples. Without 
any effort to economize it runs in about 80 seconds of CPU time on a CY- 
BER 875 including precalculation of all matrix elements and actually most 
of this time is spent on calculating logarithms and exponentials, which is 
incidental to this particular application and not inherent in the algorithm. 
The 80 seconds is to be compared with about one hour of CPU time to run 
the Monte Carlo and so it seems well worthwhile to include the smooth- 
ing. Possible further improvements have been mentioned in the sections 
on fine tuning and on weighting. It would also be of interest to examine 
the possibilities of adapting the algorithm to eztrapolalion. At some higher 
level of sophistication one might envision some true hybrid which combines 
smoothing and fitting through adroit use of boundary conditions, etc. 

My thanks to D. Finley and L. Michelotti for their comments. 
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